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Abstract: - The aim of this contribution is to give an overview of the possible applications and mechanical 
properties of folded sandwich cores. As the name already recognizes the structure is manufactured by folding 
from a flat semi-finished product. Folded cores possess some properties that make them particularly interesting 
for the aviation industry. To determine the mechanical properties a numerical homogenisation method has been 
applied. For a selected type of folded core the properties are exemplarily determined. The procedure is 
applicable to other types of sandwich cores as well. Also the mechanical properties are similar for other kinds 
of folded sandwich cores. 
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1 Introduction 
In many fields of engineering sandwich structures  
are quite common due to their superior 
characteristics in regard of effective stiffness and 
strength. This is in particular the case in aerospace 
engineering, but also in truck manufacturing, in 
shipbuilding and meanwhile also in civil 
engineering. 

The typical sandwich structure is a three-layer 
structure, with two thin outer face sheets and a 
thicker core. In general the face sheets are of a 
relatively dense, stiff and strong material whereas 
the core is of low effective density, with high 
compliance and low strength. In aerospace industry 
typical cores are hard foams, honeycomb or balsa 
wood. 
 
 
2 Folded Sandwich Cores and 
Possible Applications 
Folded cores are a relatively novel kind of sandwich 
core structures. The core is manufactured by folding 
a planar base material into a three-dimensional 
structure. This process enables several geometric 
shapes of folded cores. Figure 1 shows two 
examples manufactured by the Institut für 
Flugzeugbau Stuttgart. 

 

 

Fig. 1: Different kinds of folded sandwich cores 

Folded cores have different advantages over other 
core materials. Finally, the folded cores can be 
manufactured by means of a continuous folding 
process. Compared to common honeycomb 
production processes a folded core can be 
manufactured cost-efficiently as shown in [1]. 
Folded cores can be made from different bulk 
materials e.g. aramid paper, aluminium, CFRP. 
Secondly, the geometry of the different folded core 
cells can be variable. Thereby cores with varying 
thickness or curved structures can be produced 
without post-processing [2]. 

Another advantage, particularly for the aerospace 
industry, is that the folded core is open and can be 
ventilated (figure 2). The use of closed cell 
sandwich structures like honeycomb is problematic 
for exterior structural components. There is the 
problem of the diffusion-induced penetration of 
moisture and condensation of water. The water can 
be discharged only poorly. By using ventilated 
folded cores the problem could be solved [1]. 
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Fig. 2: Ventilation of the folded sandwich core 

The possibility to ventilate the folded sandwich core 
also enables boundary layer suction. The channels 
of the folded core could be used for the suction 
(figure 3). In chordwise direction, the pressure in the 
folded core can be controlled by differently sized 
holes [3]. 

 

 

Fig. 3: Boundary layer suction by using folded 

sandwich core [4] 

Another possible area of application is stealth 
technology. Folded cores have groups of faces 
sloped at an angle to the radiation source, where at 
the same time the outer skin can be positioned 
orthogonally to it. Furthermore, by re-reflecting the 
signal will lose its intensity [5]. The principle of 
operation is shown in figure 4. 

 

Fig. 4:Reflection of radar signal [5] 

 
 
3 Homogenisation Concept 
In order to use and analyse folded sandwich cores in 
real structural components the mechanical 
properties should be known. There are some 
publications about the mechanical properties of 
folded cores. Especially the behaviour under 
compression and shear loads [6], [7], [8] as well as 
the impact behaviour [9], [10] were investigated. All 
of these investigations however are restricted to a 
few geometries. There is no consideration of the 
general mechanical behaviour and the influence of 
the underlying geometric parameters. In this 
contribution all components of the elasticity tensor 
of the foldcore continuum are determined by using a 
numerical homogenisation concept. Furthermore, a 
wide range of different geometric shapes are 
examined. 

The folded sandwich core consists of periodical 
wave elements. For modelling only one wave 
element is used as a representative volume element 
(RVE). It is assumed that the characteristic length L 
of the macro-scale structure is much larger than the 
characteristic length l of the considered RVE (l<<L) 
[11]. In order to determine the effective stiffness of 
the folded core a strain-energy homogenisation 
concept is used [12]. In this method the assumption 
is made, that the RVE and a corresponding effective 
homogenised medium (EHM), with yet unknown 
properties, are equivalent, if a macroscopically 
equivalent deformation state leads to the same strain 
energy in both elements. This equivalent element is 
a homogeneous volume with the same shape and 
boundary condition as the RVE (see Fig. 5). The 
strain-energy requires 

= = =∫ ∫ * *1 1
RVE EHM

RVE EHM

U UdV U dV U
V V

                                               

(1) 

where U denotes the strain energy density in the 
core structure and U* the strain energy density in 
the equivalent homogenised medium. The 
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equivalence of the deformation state for the 
elements necessitates 

= = =∫ ∫ * *1 1
ij ij ij ijRVE EHM

RVE EHM

F F dV F dV F
V V

                                              

(2) 

with the deformation gradient Fij. 

 

 

Fig. 5: Homogenisation concept for the folded core 

On the outer surface of the representative volume 
element periodic boundary conditions are applied. 
This requires that the relative displacement between 
two points on opposite surfaces of the element is 
equal. This ensures that the periodic repetition of the 
cell is also possible in the deformed configuration. 
The effective Green-Lagrange strain tensor can be 
expressed by the deformation gradient 

( )1
2ij ki kj ijE F F δ= −  and it can be shown, that the 

effective strain tensor can be derived directly from 
the prescribed displacements of the corner nodes, if 
the translatoric and rotatory rigid body motion of the 
volume element is suppressed. Consequently for the 
determination of the effective material properties of 
the homogeneous medium only the displacement 
values at the corner nodes needs to be analysed. 
 
 
4 Implementation of the Homogeni-
sation Concept 
The numerical homogenisation is carried out with 
the finite element software ABAQUS. The model is 
generated with a PYTHON script. Also the analysis 
of the output data is done with the help of the      
PYTHON script. The folded core geometry has been 
generated in a parameterized form. 

 

 

Fig. 6: Geometric parameters of the folded core 

One wave element can be described by six 
geometric parameters (see Fig 6), namely length a, 
length b, length c, height h, the included angle α 
between edge a and edge b and the sheet thickness t. 
As starting values, the dimensions of an existing 
folded core (Fig.1 b, Fig. 2) are used with the 
following data: a = 14 mm, b = 24 mm, c = 5 mm, α 
= 65°, h = 19 mm and t = 0,75 mm. Due to the 
parameterization of the geometry, a wide selection 
of different configurations can be examined. For the 
range of parameters, there are limitations due to 
geometry. If the height of the folded core is zero, it 
becomes a flat plate. On the other hand the 
maximum height is calculated according to the 
equation: 

                          α= ⋅max sin( )h a                  (3) 

The foldcore is meshed with 4-node shell elements 
(S4) from the ABAQUS element library. The mesh 
is structured so that every node on the surface of the 
RVE has an opposite node that differs in only one 
coordinate.  

 

Fig. 7: The highlighted nodes of the mesh are used 
for the periodic boundary conditions. 
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By using equation constraints, periodic boundary 
conditions are implemented for all nodes on the 
outer surface of the RVE. At the corners of the 
volume “master nodes” are created.  

All nodes on the outer surface are coupled with 
these “master nodes” by periodic boundary 
conditions of the following kind.  

ϕ ϕ
+ −

+ −
− = −
=

( ) (*) ( ) (1)

( ) ( )

k k
i i i i

k k
i i

u u u u , = 1,2,3i                                                          

(4) 

Therein, ui are the translatory and iϕ the rotatory 
degress of freedom, k+ and k- denote corresponding 
nodes on opposite faces and * indicates the “master 
nodes” [13]. 

Thereby, the entire RVE can be deformed by 
displacements only of the master nodes. To 
determine all values of the elasticity tensor, it is 
necessary to perform three simulated “elongation 
tests” (see Fig. 8(a)) and three simulated “shear 
deformation tests” (see Fig. 8(b)) for each geometry.  

  

(a) Uniaxial strain 
deformation in 3 

direction 

(b) Shear deformation in 
23 direction 

Fig. 8: Determination of the effective elasticity 
tensor by prescribed strain states. 

 
5 Effective Elastic Stiffnesses 
By means of the implemented homogenisation 
procedure all components of the elasticity tensor 
could be determined for a family of folded core 
configurations in a straightforward manner with 
high efficiency and generality. In doing so, the 
effective stiffnesses have been determined in 
dependence of the introduced parameters a, b, c, α, 
h, and t. As shown in Fig. 8 all results apply to the 
core without face sheets. The folded core exhibits an 
effective orthotropic material behaviour which can 
be expressed as: 
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22 1122 2222 2233 22
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23 2323 23
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C C C

C
C

C

σ ε
σ ε
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=     
     
     
     
     

                                            

(5) 

Due to the effective orthotropic behaviour, it is 
possible to express the components of the stiffness 
tensor by the engineering constants 1E , 2E , 3E , 23G ,

13G , 12G , 12ν , 13ν , 21ν , 23ν , 31ν and 32ν . 

In Figs. 11-22, parametric dependences of the 
engineering constants are presented for three 
different angles α and different heights h. The 
maximum height h is obtained from Eq. (3). With 
the variation of the height h the orientation of the 
faces of the folded core varies as well. Fig. 9 shows 
the variation of the shape for different heights h. 

 

 

 

Fig. 9: Variation of the shape for different heights 

For each combination of the geometric parameters, 
respectively six simulations were executed, to 
determine all engineering constants. As might be 
expected, the effective engineering constants depend 
on the orientation of the faces in the RVE and the 
relative volume. The relative volume is defined as 
the ratio of the sheet volume to the RVE. There are 
two limiting cases for the variation of the height h. 
For the case that h is zero, the folded core becomes 
a flat sheet in the 1,2-plane. For the case that h is the 
maximum height, the faces between edge a and 
edge b get oriented in the 2,3-plane. These limiting 
cases are only theoretical cases and can only be 
approximated with the model. 

The effects of the shape can be seen particularly 
well in Young’s modulus 2E  (see Fig. 12). For very 
small heights Young’s modulus converges against 
the material stiffness, because the faces of the 
folded core are almost in the 1,2-plane and the RVE 
corresponds to the volume of the sheet. For 
increasing height Young’s modulus decreases, 
because the relative volume decreases and the 
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orientation of the faces deviates from the 1,2-plane. 
If the height approaches the maximum height h 
Young’s modulus again increases because the faces 
between edge a and edge b get orientated in the 2,3-
plane. 

Young’s modulus 1E  (see Fig. 11) starts near the 
bulk material stiffness, because the faces of the 
folded core are almost in the 1,2-plane. Young’s 
modulus 1E decreases for increasing height, because 
the faces of the folded core move out of the 1,2-
plane. The reverse behaviour can be observed for 
Young’s modulus 3E (see Fig. 13). Young’s 
modulus 3E  increases for increasing height h, 
because the faces of the folded core move in the 2,3-
direction. 

The shear modulus 12G  (see Fig. 14) starts near 
the material shear stiffness, because the faces of the 
folded core are almost in the 1,2-plane. The shear 
modulus 12G decreases for increasing height h, 
because the faces of the folded core move out of the 
1,2 plane. The reverse behaviour can be observed 
for the shear modulus 23G  (Fig. 15). The shear 
modulus increases for increasing height h, because 
the faces between a and c of the folded core move in 
the 2,3-plane. 

A distinctive feature of the folded core is that the 
effective Poisson’s ratios for some combinations of 
parameters can be very large compared to isotropic 
materials. For small heights the Poisson’s ratios 13ν
and 12ν  become exceptionally large. Large values 
can be observed for large heights for the Poisson’s 
ratios 31ν  and 32ν , too. The reason for such unusual 
values is that the effective Poisson’s ratios are 
dominated by the geometry. The folded core has a 
behaviour like a gearing mechanism. It is important 
to remember that only the behaviour of the core was 
examined without facesheets which would hinder 
such core behaviour. 

Furthermore the effective Poisson’s ratios 12ν and
21ν can be negative. Figs. 21-22 show the variation 

of 12ν  and 21ν  for different angles α. For a height h 
near zero Poisson’s ratios are positive, in the 
extreme case h = 0 it would be the material 
Poisson’s ratio. For increasing height h the 
Poisson’s ratio 12ν  becomes negative. Heuristically, 
this can be explained by a gearing mechanism of the 
foldcore structure as it is illustrated by the series of 
fold-configurations in the respective figures. A 
material with this kind of behaviour is called 
auxetic. This kind of behaviour means that under 

uniaxial tensile behaviour in 1-direction there will 
be an elongation also in 2-direction. 

 

 

 

Fig. 10 Relative volume as function of core 
height 

 

 

 
Fig. 11 Young’s modulus E1 as function of core 
height 
 
 

 
Fig. 12 Young’s modulus E2 as function of core 
height 
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Fig. 13 Young’s modulus E3 as function of core 
height 
 

 
Fig. 14 Shear modulus G12 as function of core 
height 
 

 
Fig. 15 Shear modulus G23 as function of core 
height 

 
Fig. 16 Shear modulus G13 as function of core 
height 
 

 
Fig. 17 Poisson’s ratio 13ν as function of core 
 height  
 

 
Fig. 18 Poisson’s ratio 23ν  as function of core 
height 
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Fig. 19 Poisson’s ratio 31ν  as function of core 
height 
 

 
Fig. 20 Poisson’s ratio 32ν  as function of core 
height 
 

 
Fig. 21 Poisson’s ratio 12ν  as function core height 

 
Fig. 22 Poisson’s ratio 21ν  as function of core height 
 
 
6 Conclusion 
In many fields of modern lightweight constructions 
sandwich structures play an increasingly important 
role. By using folded core structures instead of 
common used sandwich structures it is possible to 
avoid disadvantages like accumulated water in 
closed cells. Special applications like boundary 
layer suction or stealth technology are conceivable. 

By the concept of representative volume element 
and by the techniques of homogenisation the 
effective elastic properties of a sandwich core can 
be identified. The effective mechanical properties of 
an example of one type of folded core were 
determined for a wide range of the height and 
different angles. A technically useful range is much 
smaller, but for extreme cases of the geometry the 
folded core has astonishing properties. The foldcore 
exhibits two amazing effective mechanical 
properties, namely very large Poisson’s ratios and 
negative Poisson’s ratios. 
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